Copied to
clipboard

G = C42.133D10order 320 = 26·5

133rd non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.133D10, C10.132- 1+4, C10.1122+ 1+4, C20⋊Q817C2, (C4×Q8)⋊15D5, (C4×D20)⋊41C2, (Q8×C20)⋊17C2, C4⋊C4.300D10, D10⋊Q812C2, D103Q810C2, C4.49(C4○D20), C4⋊D20.11C2, C4.D2029C2, C20.23D49C2, C422D512C2, C42⋊D518C2, (C2×Q8).181D10, D10.13D49C2, C20.120(C4○D4), (C2×C10).126C24, (C4×C20).178C22, (C2×C20).171C23, C2.24(D48D10), (C2×D20).271C22, D10⋊C4.7C22, C4⋊Dic5.369C22, (Q8×C10).226C22, (C2×Dic5).57C23, (C4×Dic5).94C22, (C22×D5).48C23, C22.147(C23×D5), C53(C22.36C24), (C2×Dic10).34C22, C10.D4.77C22, C2.14(Q8.10D10), C10.56(C2×C4○D4), C2.65(C2×C4○D20), (C2×C4×D5).85C22, (C5×C4⋊C4).354C22, (C2×C4).171(C22×D5), SmallGroup(320,1254)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.133D10
C1C5C10C2×C10C22×D5C2×C4×D5C42⋊D5 — C42.133D10
C5C2×C10 — C42.133D10
C1C22C4×Q8

Generators and relations for C42.133D10
 G = < a,b,c,d | a4=b4=1, c10=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=b2c9 >

Subgroups: 814 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22×D5, C22.36C24, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C4×C20, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q8×C10, C42⋊D5, C4×D20, C4.D20, C422D5, C20⋊Q8, D10.13D4, C4⋊D20, D10⋊Q8, D103Q8, C20.23D4, Q8×C20, C42.133D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5, C22.36C24, C4○D20, C23×D5, C2×C4○D20, Q8.10D10, D48D10, C42.133D10

Smallest permutation representation of C42.133D10
On 160 points
Generators in S160
(1 119 11 109)(2 110 12 120)(3 101 13 111)(4 112 14 102)(5 103 15 113)(6 114 16 104)(7 105 17 115)(8 116 18 106)(9 107 19 117)(10 118 20 108)(21 41 31 51)(22 52 32 42)(23 43 33 53)(24 54 34 44)(25 45 35 55)(26 56 36 46)(27 47 37 57)(28 58 38 48)(29 49 39 59)(30 60 40 50)(61 83 71 93)(62 94 72 84)(63 85 73 95)(64 96 74 86)(65 87 75 97)(66 98 76 88)(67 89 77 99)(68 100 78 90)(69 91 79 81)(70 82 80 92)(121 151 131 141)(122 142 132 152)(123 153 133 143)(124 144 134 154)(125 155 135 145)(126 146 136 156)(127 157 137 147)(128 148 138 158)(129 159 139 149)(130 150 140 160)
(1 49 69 159)(2 50 70 160)(3 51 71 141)(4 52 72 142)(5 53 73 143)(6 54 74 144)(7 55 75 145)(8 56 76 146)(9 57 77 147)(10 58 78 148)(11 59 79 149)(12 60 80 150)(13 41 61 151)(14 42 62 152)(15 43 63 153)(16 44 64 154)(17 45 65 155)(18 46 66 156)(19 47 67 157)(20 48 68 158)(21 93 121 101)(22 94 122 102)(23 95 123 103)(24 96 124 104)(25 97 125 105)(26 98 126 106)(27 99 127 107)(28 100 128 108)(29 81 129 109)(30 82 130 110)(31 83 131 111)(32 84 132 112)(33 85 133 113)(34 86 134 114)(35 87 135 115)(36 88 136 116)(37 89 137 117)(38 90 138 118)(39 91 139 119)(40 92 140 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 123 79 33)(2 32 80 122)(3 121 61 31)(4 30 62 140)(5 139 63 29)(6 28 64 138)(7 137 65 27)(8 26 66 136)(9 135 67 25)(10 24 68 134)(11 133 69 23)(12 22 70 132)(13 131 71 21)(14 40 72 130)(15 129 73 39)(16 38 74 128)(17 127 75 37)(18 36 76 126)(19 125 77 35)(20 34 78 124)(41 101 141 83)(42 82 142 120)(43 119 143 81)(44 100 144 118)(45 117 145 99)(46 98 146 116)(47 115 147 97)(48 96 148 114)(49 113 149 95)(50 94 150 112)(51 111 151 93)(52 92 152 110)(53 109 153 91)(54 90 154 108)(55 107 155 89)(56 88 156 106)(57 105 157 87)(58 86 158 104)(59 103 159 85)(60 84 160 102)

G:=sub<Sym(160)| (1,119,11,109)(2,110,12,120)(3,101,13,111)(4,112,14,102)(5,103,15,113)(6,114,16,104)(7,105,17,115)(8,116,18,106)(9,107,19,117)(10,118,20,108)(21,41,31,51)(22,52,32,42)(23,43,33,53)(24,54,34,44)(25,45,35,55)(26,56,36,46)(27,47,37,57)(28,58,38,48)(29,49,39,59)(30,60,40,50)(61,83,71,93)(62,94,72,84)(63,85,73,95)(64,96,74,86)(65,87,75,97)(66,98,76,88)(67,89,77,99)(68,100,78,90)(69,91,79,81)(70,82,80,92)(121,151,131,141)(122,142,132,152)(123,153,133,143)(124,144,134,154)(125,155,135,145)(126,146,136,156)(127,157,137,147)(128,148,138,158)(129,159,139,149)(130,150,140,160), (1,49,69,159)(2,50,70,160)(3,51,71,141)(4,52,72,142)(5,53,73,143)(6,54,74,144)(7,55,75,145)(8,56,76,146)(9,57,77,147)(10,58,78,148)(11,59,79,149)(12,60,80,150)(13,41,61,151)(14,42,62,152)(15,43,63,153)(16,44,64,154)(17,45,65,155)(18,46,66,156)(19,47,67,157)(20,48,68,158)(21,93,121,101)(22,94,122,102)(23,95,123,103)(24,96,124,104)(25,97,125,105)(26,98,126,106)(27,99,127,107)(28,100,128,108)(29,81,129,109)(30,82,130,110)(31,83,131,111)(32,84,132,112)(33,85,133,113)(34,86,134,114)(35,87,135,115)(36,88,136,116)(37,89,137,117)(38,90,138,118)(39,91,139,119)(40,92,140,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,123,79,33)(2,32,80,122)(3,121,61,31)(4,30,62,140)(5,139,63,29)(6,28,64,138)(7,137,65,27)(8,26,66,136)(9,135,67,25)(10,24,68,134)(11,133,69,23)(12,22,70,132)(13,131,71,21)(14,40,72,130)(15,129,73,39)(16,38,74,128)(17,127,75,37)(18,36,76,126)(19,125,77,35)(20,34,78,124)(41,101,141,83)(42,82,142,120)(43,119,143,81)(44,100,144,118)(45,117,145,99)(46,98,146,116)(47,115,147,97)(48,96,148,114)(49,113,149,95)(50,94,150,112)(51,111,151,93)(52,92,152,110)(53,109,153,91)(54,90,154,108)(55,107,155,89)(56,88,156,106)(57,105,157,87)(58,86,158,104)(59,103,159,85)(60,84,160,102)>;

G:=Group( (1,119,11,109)(2,110,12,120)(3,101,13,111)(4,112,14,102)(5,103,15,113)(6,114,16,104)(7,105,17,115)(8,116,18,106)(9,107,19,117)(10,118,20,108)(21,41,31,51)(22,52,32,42)(23,43,33,53)(24,54,34,44)(25,45,35,55)(26,56,36,46)(27,47,37,57)(28,58,38,48)(29,49,39,59)(30,60,40,50)(61,83,71,93)(62,94,72,84)(63,85,73,95)(64,96,74,86)(65,87,75,97)(66,98,76,88)(67,89,77,99)(68,100,78,90)(69,91,79,81)(70,82,80,92)(121,151,131,141)(122,142,132,152)(123,153,133,143)(124,144,134,154)(125,155,135,145)(126,146,136,156)(127,157,137,147)(128,148,138,158)(129,159,139,149)(130,150,140,160), (1,49,69,159)(2,50,70,160)(3,51,71,141)(4,52,72,142)(5,53,73,143)(6,54,74,144)(7,55,75,145)(8,56,76,146)(9,57,77,147)(10,58,78,148)(11,59,79,149)(12,60,80,150)(13,41,61,151)(14,42,62,152)(15,43,63,153)(16,44,64,154)(17,45,65,155)(18,46,66,156)(19,47,67,157)(20,48,68,158)(21,93,121,101)(22,94,122,102)(23,95,123,103)(24,96,124,104)(25,97,125,105)(26,98,126,106)(27,99,127,107)(28,100,128,108)(29,81,129,109)(30,82,130,110)(31,83,131,111)(32,84,132,112)(33,85,133,113)(34,86,134,114)(35,87,135,115)(36,88,136,116)(37,89,137,117)(38,90,138,118)(39,91,139,119)(40,92,140,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,123,79,33)(2,32,80,122)(3,121,61,31)(4,30,62,140)(5,139,63,29)(6,28,64,138)(7,137,65,27)(8,26,66,136)(9,135,67,25)(10,24,68,134)(11,133,69,23)(12,22,70,132)(13,131,71,21)(14,40,72,130)(15,129,73,39)(16,38,74,128)(17,127,75,37)(18,36,76,126)(19,125,77,35)(20,34,78,124)(41,101,141,83)(42,82,142,120)(43,119,143,81)(44,100,144,118)(45,117,145,99)(46,98,146,116)(47,115,147,97)(48,96,148,114)(49,113,149,95)(50,94,150,112)(51,111,151,93)(52,92,152,110)(53,109,153,91)(54,90,154,108)(55,107,155,89)(56,88,156,106)(57,105,157,87)(58,86,158,104)(59,103,159,85)(60,84,160,102) );

G=PermutationGroup([[(1,119,11,109),(2,110,12,120),(3,101,13,111),(4,112,14,102),(5,103,15,113),(6,114,16,104),(7,105,17,115),(8,116,18,106),(9,107,19,117),(10,118,20,108),(21,41,31,51),(22,52,32,42),(23,43,33,53),(24,54,34,44),(25,45,35,55),(26,56,36,46),(27,47,37,57),(28,58,38,48),(29,49,39,59),(30,60,40,50),(61,83,71,93),(62,94,72,84),(63,85,73,95),(64,96,74,86),(65,87,75,97),(66,98,76,88),(67,89,77,99),(68,100,78,90),(69,91,79,81),(70,82,80,92),(121,151,131,141),(122,142,132,152),(123,153,133,143),(124,144,134,154),(125,155,135,145),(126,146,136,156),(127,157,137,147),(128,148,138,158),(129,159,139,149),(130,150,140,160)], [(1,49,69,159),(2,50,70,160),(3,51,71,141),(4,52,72,142),(5,53,73,143),(6,54,74,144),(7,55,75,145),(8,56,76,146),(9,57,77,147),(10,58,78,148),(11,59,79,149),(12,60,80,150),(13,41,61,151),(14,42,62,152),(15,43,63,153),(16,44,64,154),(17,45,65,155),(18,46,66,156),(19,47,67,157),(20,48,68,158),(21,93,121,101),(22,94,122,102),(23,95,123,103),(24,96,124,104),(25,97,125,105),(26,98,126,106),(27,99,127,107),(28,100,128,108),(29,81,129,109),(30,82,130,110),(31,83,131,111),(32,84,132,112),(33,85,133,113),(34,86,134,114),(35,87,135,115),(36,88,136,116),(37,89,137,117),(38,90,138,118),(39,91,139,119),(40,92,140,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,123,79,33),(2,32,80,122),(3,121,61,31),(4,30,62,140),(5,139,63,29),(6,28,64,138),(7,137,65,27),(8,26,66,136),(9,135,67,25),(10,24,68,134),(11,133,69,23),(12,22,70,132),(13,131,71,21),(14,40,72,130),(15,129,73,39),(16,38,74,128),(17,127,75,37),(18,36,76,126),(19,125,77,35),(20,34,78,124),(41,101,141,83),(42,82,142,120),(43,119,143,81),(44,100,144,118),(45,117,145,99),(46,98,146,116),(47,115,147,97),(48,96,148,114),(49,113,149,95),(50,94,150,112),(51,111,151,93),(52,92,152,110),(53,109,153,91),(54,90,154,108),(55,107,155,89),(56,88,156,106),(57,105,157,87),(58,86,158,104),(59,103,159,85),(60,84,160,102)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F4A···4F4G4H4I4J4K···4O5A5B10A···10F20A···20H20I···20AF
order12222224···444444···45510···1020···2020···20
size11112020202···2444420···20222···22···24···4

62 irreducible representations

dim1111111111112222224444
type+++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10C4○D202+ 1+42- 1+4Q8.10D10D48D10
kernelC42.133D10C42⋊D5C4×D20C4.D20C422D5C20⋊Q8D10.13D4C4⋊D20D10⋊Q8D103Q8C20.23D4Q8×C20C4×Q8C20C42C4⋊C4C2×Q8C4C10C10C2C2
# reps11122121211124662161144

Matrix representation of C42.133D10 in GL6(𝔽41)

4000000
0400000
0030143114
00103104
0033151127
004073138
,
900000
090000
00113200
0093000
002803932
002813372
,
40390000
010000
001993713
004409
00215532
0040172013
,
900000
32320000
00354536
00317306
0031232032
0024403810

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,30,10,33,40,0,0,14,3,15,7,0,0,31,10,11,31,0,0,14,4,27,38],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,11,9,28,28,0,0,32,30,0,13,0,0,0,0,39,37,0,0,0,0,32,2],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,19,4,2,40,0,0,9,4,15,17,0,0,37,0,5,20,0,0,13,9,32,13],[9,32,0,0,0,0,0,32,0,0,0,0,0,0,35,3,31,24,0,0,4,17,23,40,0,0,5,30,20,38,0,0,36,6,32,10] >;

C42.133D10 in GAP, Magma, Sage, TeX

C_4^2._{133}D_{10}
% in TeX

G:=Group("C4^2.133D10");
// GroupNames label

G:=SmallGroup(320,1254);
// by ID

G=gap.SmallGroup(320,1254);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,100,675,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^9>;
// generators/relations

׿
×
𝔽